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Abstract

A current issue in evolutionary robotics involves the co-
evolution of robot controllers and body morphologies built
from modular parts. As part of ongoing research, a model for
the evolution of the morphologies and neural network con-
trollers of robots is described. Several robots are evolved
for locomotion in simulation built from modules represent-
ing cheap, preexisting parts and one is physically built that
has comparable behaviour with its original simulated version.
The behaviour in simulation of such example robots is de-
scribed. A brief comparison is made between the behaviour
of a simulated robot whose design and behaviour has been
evolved and its physically instantiated counterpart.

Introduction
A current line of research in evolutionary robotics involves
the co-evolution of robot controllers and body morpholo-
gies. Much of the existing research, going back to the
work of Sims (Sims, 1994b; Sims, 1994a), is either con-
cerned with exploring arbitrary evolved structures in simu-
lation (Komosinski and Ulatowski, 1999) or evolving con-
trollers for a given complex morphology (Ijspeert, 2001), or
building self-repairing modular robots that alter their mor-
phology during the lifetime of the agent within constraints
(Murata et al., 2001), or exploring appropriate generative
mappings to develop body structures out of genotypic data,
some of which are then tested in the real world (Pollack
et al., 2001; Hornby, 2003; Funes, 2001). The different (but
related) research issues of these lines involve questions of
modular design, evolvability, and the relation between em-
bodied structures and behavioural performance.

The present paper is part of a research direction within
this area with two central objectives: the development and
understanding of more complex behavioural capabilities be-
yond basic movement and locomotion using co-evolved
robot bodies and controllers, and the achievement of this first
aim in the real world by means of cheap and re-usable com-
ponents. The long term aim is to explore the feasibility of
machines capable of engaging in simple tasks of self-repair
and partial self-assembly for which the two previous objec-
tives are prerequisites.

Cop yrigh ted Material

We have started exploring the first objective using physi-
cal simulations and involving tasks such as orientation, pos-
itive and negative taxis, and pushing (Macinnes, 2003). Our
purpose in this paper concerns now the second objective:
the development of a feasible evolutionary scheme capable
of handling evolved structures made out of cheap, re-usable
real-world components using a standardised encoding itself
capable of re-use in a variety of contexts. Such compo-
nents cannot be subject to arbitrary changes (e.g., elonga-
tions, continuous displacements) and will constrain the evo-
lutionary search by their fixed properties and discrete spatial
arrangements.

The idea is to find an appropriate combination of the
power of evolutionary search and well-established engi-
neering principles such as standardisation of modules, re-
usability and low part and assembly costs. We return to
simpler behaviours like locomotion because our emphasis
is on solving the issues involved in encoding components
using a genotype that contains information about their phys-
ical properties and potentiality of assembly. This genotype
must also be evolvable under the constraints of using mod-
ules with fixed properties and must generate a convenient
plan for the resulting structures so that they can be assem-
bled and tested in the real world.

This work represents a change in emphasis from previous
work in evolvable morphology for various reasons. Firstly,
the use of a flexible library of pre-existing components from
which the robot is to be constructed. This describes both the
physical properties and other constraints such as the maxi-
mum number of modules. An advantage of this is that we
can easily restrict the robot to evolve from and utilise the
parts we have currently available. It also allows specifica-
tion of a minimal subset of essential parts that the robot must
contain to be viable, such as a controller block and portable
power source. Another advantage is that parts can be added
or removed from the library according to changing avail-
ability, or the set of components can be replaced to produce
a completely different kind of robot.

Secondly, the physical properties of the actuators used are
modelled as part of the dynamics of the robot, along with the



other essential parts such as the controller block that are nec-
essary to build a self-contained autonomous robot. We hope
that this will allow the evolutionary process to take advan-
tage of the physical dynamics of all its constituent parts and
hence build more adapted robots.

Thirdly, sensory feedback from the actuators are fed into
the controller, creating a closed sensorimotor loop and al-
lowing the robot to modulate its behaviour. This is prelim-
inary to adding more sophisticated sensors such as cameras
that has already been done in simulation to direct and mod-
ulate behaviour (Macinnes, 2003).

In summary, the morphologies and controlling neural net-
works of a population of thirty robots are co-evolved over
time via the use of an evolutionary algorithm. This is per-
formed in simulation by a cluster of PC's. An example robot
is then physically instantiated using the design provided by
its genotype. The following sections describe details regard-
ing the real robots, the simulated robots, the neural network
controller, the genotype and evolutionary algorithm, and an
example of an instantiated robot.

Real Robots
We define a robot to Consist of a controller block (Figure
1), a variable number of Lego bricks, a variable number of
servomotors (Figure 2), and a servo-driver block for each
servomotor. The on-board controller is a Motorola 68332
microprocessor running at 25MHz. The servomotors have
been adjusted to provide the position of the disk back into
the controller. The controller runs a continuous time recur-
rent neural network (CTRNN) that has a genetically deter-
mined structure. The feedback from the servomotors is fed
as input into the network. The output generated by the net-
work is used to specify the power supplied to the servomo-
tors. The control ioop for the robot is:

Feed the disk positions of the servomotors into the neural
network.

Perform an iteration of the neural network.

Set the positions of the servomotors as specified by the
neural network.

Simulated Robots
The physical parts from which the real robots are con-
structed need to be simulated by a physics engine' so we
can have an estimation of how the robot would behave if it
were physically constructed. The approach taken is to de-
scribe the shape and other physical properties of preexisting
parts such as servomotors together with the various ways
they can be connected together. This information is stored

Figure 1: The controller has Lego parts glued to it allowing
it to be attached to other parts.

Figure 2: The servomotors have Lego parts glued onto them
which allow them to be connected to other parts. They are
simulated by approximating their shape with blocks. The
anchor point positions are indicated by spheres and the an-
chor point directions are indicated by lines. It takes four
Lego studs to make a connection with another block as can
be seen by comparing the above servomotor with its simu-
lated representation below it.

tThe Open Dynamics Engine (ODE) is usçd. available fron
http://opende.sourceforge.net LOpyrJghL ed IWitfibi library. An XML schema was developed to fa-
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cilitate this2. The shape and other physical attributes of each
part was approximated by reducing it into a series of blocks.
Each block has two principal properties, the block dimen-
sions and density. The possible variations for these values
are defined in the parts library.

Each block can have associated an unlimited number of
possible anchor points. Ari anchor point describes a pos-
sible location for a connection with another block. When
two blocks are to be cotmected, an anchor point is chosen
on each and the blocks are moved and rotated so that both
anchor points occupy the same position and opposing direc-
tions. The anchor point properties used for this are:

Coordinates specifying a position, usually lying on the
edge of the block although it need not be within the body
of the block at all. It may be relative either to the centre
of the block or to the block edge.

A vector specifying the direction of the anchor point al-
lowing the relative orientation of each block to be speci-
fied in two dimensions.

A set of angles specifying the rotations of two connected
blocks, allowing the relative orientation in a third dimen-
sion.

Neural network controller
The controller used is a continuous time recurrent neural
network (CTRNN) (Beer, 1996). This is co-evolved in con-
junction with the morphology - that is, over time, the neural
network and physical morphology co-evolve together as a
single integrated entity. This means that the controller and
the robot with be closely coupled together as a single dy-
namic system, with feedback going both ways between the
controller and the servomotors. The potential in each neuron
is given by:

L = _y + WJiZj (1)

where 'r is the time constant of neuron i, y is its potential,
and w1 is the weight from i toj. The activation of the neuron
z1 is given by:

z = tanh(b1 ye) (2)

where b is the genetically determined bias value for neuron
I.

At each time-step, the input neurons of the controller are
set to the positions of the servomotors, which are normalised
to the range -1.1. An iteration of the neural network is
performed. Then output neurons are normalised to a range
0.255, and are used to set the desired position of the servo-
motors.

2Both XML schema and library in XML format are available

The Genotype
Each robot has a genotype describing how it is constructed.
The genotypes that construct the most successful robots are
more likely to be selected to have offspring in the next gen-
eration. Rank selection is used to pick genotypes.

servomotor

Block Anchor point Neural network
dimensions

density
position

axis direction
neuron bias

neuron time constant
neuron weight

Table 1: There are various numerical attributes within the
genotype that can mutate during the production of offspring.
There are also a number of structural mutations such as the
random addition or deletion of neurons or modular parts
such as servomotors or Lego bricks.

The Trial
The fitness of a robot is provided by the minimum distance
moved by any of its constituent blocks during a period of
one minute. The measuring period starts after thirty sec-
onds to avoid the strategy of the robot growing top heavy
and falling over, hence unfairly gaining a respectable fitness
(Sims, 1 994b; Macinnes, 2003).

Minimal simulations is used to facilitate the transfer to re-
from 1998). It requires that the block dimensions

Lego bricks servomotor Lego bricks

Figure 3: The genotype is constructed as a tree structure
where each node represents a modular part and each branch
represents a joint.

A direct genotype-to-phenotype mapping is used. For
each attribute in the genotype there is a corresponding at-
tribute in the robot. The parts library describes how each
block can vary. A block's dimensions and density may be
limited to a set of discrete values or be constrained within
a range. Offspring are copies of their parents with numeri-
cal values altered andlor small structural changes (Tables 2
and 3). Recombination is not used so offspring have only a
single parent.



Ian Macinnes and Ezequiel Di Paolo

Table 2: Different mutations can occur to the neural network
controller with various probabilities during reproduction of
the genotype.

Table 3: The morphology can mutate in various ways. Off-
spring are tested to make sure they can be properly con-
structed, for example that no block occupies the same space.
If their offspring is not viable, its genotype is discarded and
another offspring is produced. This is repeated until a viable
offspring is generated.

and densities specified by the genotype are subject to noise
when the robot is constructed in simulation. The parts li-
brary specifies the magnitude of the noise for each block and
it often in the order of plus or minus ten percent. Therefore
the same genotype will construct differing robots for each
trial. This is performed to help cope with inaccuracy in the
simulation and to help produce more robust robots. It should
be noted then that we do not attempt to simulate the robot as
it will exist in reality, but rather a noisy artifact that we will
use to guide the evolution of the population of genotypes.

Two robots are created using the genotype per trial. The
fitness assigned to the genotype is the average of the fitness
of both robots.

Results
Several robots were evolved in simulation (Figures 4 and 5)
and one was transfered to reality. A robot (Figure 6) was
built from a genotype in generation 2149. It evolved a loco-
motion strategy of actively using two of its four servomotors,
the other two being locked into fixed positions3. It uses ser-
vomotor c to extend limb a, resulting in a redistribution of
its weight causing it to lean forward. Servomotor b has an
edge on the ground. It turns, pushing the robot forward. The

Figure 4: A robot evolved after 1869 generations that moved
by throwing its two limbs up in the air and across. One of
its limbs developed a larger moment of inertia by increasing
its length and mass. It used its servomotors to fling both
limbs so the body tilted forward. The smaller limb changed
its angle so the robot fell in a different position from when
it started. The robot then fell forward and by the end of the
movement cycle had changed its position.

robot then draws in limb b, shifting the weight causing the
robot to lean back. The servomotors other edge is now on
the ground and it turns in the other direction, again pushing
the robot forward.

This strategy takes advantage of the movement of servo-
motor b when it turns in either direction. It depends on co-
ordinating the movement of servomotors b and c, varying its
centre of mass and continuously redistributing its weight.

There are obvious differences in the behaviour of the sim-
and real robot. The motions of the real robot are3Quicktime movies of this robot moving ,ted I fdIky that than the simulated robot. Although thefrom http://www.cogs.susx.ac.uklianmalalife9 h

Neural network mutation probability of occurring
discrete numerical mutation 0.5

adding a random weight 0.1
randomly removing a weight 0.1
moving a weight's endpoints 0.1

adding a random neuron 0.1
randomly removing a neuron 0.1

Morphology mutation probability of occurring
inserting a random part 0.05
adding a random part 0.05

randomly removing a part 0.05
dimension or density 0.3

joint moving 0.3
change in feedback sensor 0.3
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Figure 5: A robot evolved after 2166 generations that tum-
bles and rolls along. The robot starts perched on its servo-
motors. It moves its controller up above, which unbalances
it, causing it to fall over onto its back. Then it twists the
servo connecting the controller and tumbles over, moving
its position along.

strategy used is clearly the same, the simulated robot trav-
elled approximately 55cm per minute whereas the real robot
moved approximately 14cm per minute. One reason was
found to be because updating the neural network in the sim-
ulation was always assumed to be done within a single time-
step of 0.05 seconds. The microprocessor in the real robot's
controller was set to use this as a minimum period but took
longer than this to perform a single update of the neural net-
work. As a result, it took one minute forty seconds for the
real robot to perform the same number of

Figure 6: The locomotion strategy of this robot depends
closely on its close coupling between its morphology and
controller. Above is the simulated robot and below the view
of its real counterpart from above and the front. The real
robot's behaviour is comparable with its original simulation.

measuring period of one minute, there are (60 / 0.05 sec-
onds) 1200 discrete neural network updates. The real robot
moved a distance of 23cm using a measuring period defined
by the number of updates rather than time. It is expected that
the time taken for the real robot to perform a neural network
update will vary depending upon the number of neurons and
speed of the controller. This may result in it extending be-
yond any fixed update time used in the simulated robot. We
conclude that the neural network update time should be sub-
ject to minimal simulation noise to result in a better reality
transfer.

Conclusions
It is possible to evolve the morphologies and controllers of

p11ltjrpbots to perform locomotion and successfully
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transfer them to reality using cheap, reusable, and modu-
lar parts. The model shown does not use continuous values
within the physical morphology section of the genotype but
discrete values from a predefined set of preexisting compo-
nents. The resulting robots successfully employ a variety of
strategies that depend on the close coupling of their physi-
cal body and their controller. This is facilitated via careful
use of minimal simulations (Jakobi, 1998), which requires
considerable inter-trial noise.

The next step is reducing the difference between the sim-
ulated and real robots, and to produce the more compli-
cated sequential behaviour that has already been produced
in robots with evolved morphologies made from genotypes
with continuous values (Macinnes, 2003). It is probable that
an indirect genotype-to-phenotype mapping would improve
the evolvability of the methodology. More complicated
mappings have previously been explored (Hornby and Pol-
lack, 2001a; Hornby and Pollack, 200lb) and would seem
to be a fruitful area of study combined with the technology
described here.

Acknowledgements
We'd like to thank Bill Bigge of the Autonomous Systems
Laboratory at the University of Sussex for help at various
times on the hardware of the robots.

References
Beer, R. (1996). Towards the evolution of dynamical neural

networks for minimally cognitive behaviour. In From
animals to animats 4: Proceedings of the Fourth In-
ternational Conference on Simulation of Adaptive Be-
haviour, pages 421-429. MIT Press.

Funes, P. (2001). Evolution of Complexity in Real-World
Domains. PhD thesis, Brandeis University, Waltham,
Massachusetts, USA.

Hornby, G. (2003). Generative Representations for Evolu-
tionary Design Automation. PhD thesis, Brandeis Uni-
versity, Dept. of Computer Science, Boston, MA, USA.

Hornby, G. and Pollack, J. (200la). The advantages of
generative grammatical encodings for physical design.
In Proceedings of the 2001 Congress on Evolution-
ary Computation CEC200J, pages 600-607, COEX,
World Trade Center, 159 Samseong-dong, Gangnam-
gu, Seoul, Korea. IEEE Press.

Hornby, G. and Pollack, J. (2001b). Body-brain co-evolution
using L-systems as a generative encoding. In Spec-
tor, L., Goodman, E. D., Wu, A., Langdon, W. B.,
Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk,
S., Garzon, M. H., and Burke, E., editors, Proceedings
of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2001), pages 868-875 San Francisco,
California, USA. Morgan Kaufmann. top yrigh ted Material

Ijspeert, A. (2001). A coimectionist central pattern gener-
ator for the aquatic and terrestrial gaits of a simulated
salamander. Biological Cybernetics, 85(5):33 l-348.

Jakobi, N. (1998). Minimal Simulations for Evolutionary
Robotics. PhD thesis, University of Sussex.

Komosinski, M. and Ulatowski, S. (1999). Framsticks: To-
wards a simulation of a nature-like world, creatures and
evolutions. In Floreano, D., Nicoud, J., and Mondada,
F., editors, Advances in Artjficial Life - Proceedings of
the 5th European Conference on Artificial L4fe (ECAL),
pages 261-265. Springer-Verlag.

Macinnes, I. (2003). Visually guided physically simulated
agents with evolved morphologies. In W.Banzhaf,
T.Christaller, P.Dittrich, J.T.Kirn, and J.Ziegler, editors,
Advances in Art y'lcial L41e - Proceedings of the 7th Eu-
ropean Conference on Artificial Life (ECAL), volume
2801 of Lecture Notes in Arty'lcial Intelligence, pages
82 1-828. Springer Verlag Berlin, Heidelberg.

Murata, S., Yoshida, E., Kurokawa, H., Tornita, K., and
Kokaji, S. (2001). Self-repairing mechanical systems.
Autonomous Robots, lO(l):7-2l.

Pollack, J., Lipson, H., and Funes, P. (2001). Three gener-
ations of automatically designed robots. Artificial Life,
7(3):215-233.

Sims, K. (1994a). Evolving 3D morphology and behaviour
by competition. In Brooks, R. and Maes, P., editors,
Art jflcial Life IVProceedings, pages 28-39, MIT, Cam-
bridge, MA, USA. MIT Press.

Sims, K. (1994b). Evolving virtual creatures. In Computer
Graphics, Annual Conference Series, (SIGGRAPH
1994 Proceedings), pages 15-22.


