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Abstract Airline companies need to organize and manage their route networks in a
more cost-efficient and reliable way, in order to cope with increasing customer de-
mands and market changes. This paper attempts to apply complex network concepts
and techniques to model airline route networks, and the focus is then put on how to
develop an effective and efficient Genetic Algorithm (GA) to optimize airline route
networks in terms of certain network properties which are identified to have cru-
cial roles to play in making airline route networks cost-efficient and reliable. The
chromosome structure in the proposed GA is based on complex network modelling,
and as a result, effective evolutionary operators, particularly a highly efficient uni-
form crossover operator, are developed. The results demonstrate that the reported
GA has a good potential to improve the topology of airline route networks in terms
of network properties of interest such as operating costs and network robustness.

1 Introduction

Every airline company needs to organize its services to cover a set of cities of in-
terest by providing either direct or indirect flight connections. An airline route net-
work is a complete set of all direct flights provided by the company to cover its
targeted cities. In the past two decades, the aviation traffic volume around the world
has kept soaring up, and the competition between airline companies has become
more and more fierce [1]. To survive and/or to make more profits, an action the
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airline companies have to take is to reorganize their route networks in a more cost-
efficient and reliable way. Particularly, after the deregulation of the passenger avi-
ation market at the end of last century, many “trunkline”-carriers took advantage
of the possibilities of the liberalised market and reorganised their networks from
“point-to-point” into “hub-and-spoke” topologies [2–4]. On the other hand, some
new or recently started airline companies continued operating “point-to-point” net-
works on a low-cost, no-frill, low-price basis. Besides changing the fundamental
structure from point-to-point to hub-and-spoke topologies, airline route networks
can somehow carry growing traffic volumes by other means such as using larger
airplanes, increasing frequencies on existing routes, and adding new routes [6].

Modelling airline route networks is a crucial step for managing such networks,
and it has attracted attention from many researchers [3,5,7,8]. This paper will shed
some light on the modelling of airline route networks with complex network tech-
niques. More than modelling, the focus of the paper is to develop an effective and
efficient genetic algorithm (GA) to optimize the topology of airline route networks,
which is a major concern of airline companies. Complex networks, i.e. networks
whose structure is irregular, complex and dynamically evolving in time, are all
around us in our daily life [9]. As a recently developed mathematical framework,
complex network theory has a good potential for systematically studying airline
route networks. Actually, one can consider that, the two main categories of airline
route networks, point-to-point and hub-and-spoke networks, are engineering exam-
ples of small-world network and scale-free network, respectively. Therefore, the
corresponding concepts, measures and algorithms developed in complex network
theory are useful in the systematic study of airline route networks. The first ob-
jective of this paper is to introduce some complex network properties suitable for
the modelling of airline route networks. Based on these ideas, the second objec-
tive is to develop an effective and efficient algorithm to optimize the topology of
airline route networks. As large-scale parallel stochastic search and optimization al-
gorithms, GAs, if properly designed, have the capability of producing high quality
solutions to the optimization of network structures [10–12]. The design of evolution-
ary operators, i.e., mutation and crossover, is particularly crucial in the successful
implementations of GAs for such problems.

2 Problem Formulation

2.1 Network Modelling and Properties

In the framework of graph theory, an airline route network can be represented as
an undirected graph G = (N ,L ), which consists of two sets N and L , such
that N ̸= /0 and L is a set of unordered pairs of elements of N . The elements
of N ≡ {n1,n2, . . . ,nN} are the nodes of the graph G, i.e., the cities linked by the
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airline route network, while the elements of L ≡ {l1, l2, . . . , lL} are its links, i.e., if
there is a link between two cities, it means the airline provides direct flight service
between these two cities. The number of elements in N and L are denoted by
N and L, respectively. A node is referred to by its order i in the set N , and each
link is defined by a couple of nodes i and j, and is denoted as (i, j) or li, j. A graph
of airline route network G(N,L) = (N ,L ) can be completely described by the
adjacency matrix A , a N × N square matrix whose entry ai j,(i, j = 1, . . . ,N) is
equal to 1 when the link li, j exists, and zero otherwise.

Degree and degree distribution. The degree pD(i) of a node i is the number of
links incident with the node, and is defined in terms of the adjacency matrix A as

pD(i) =
N

∑
j=1

ai, j. (1)

In the airline route network, the degree pD(i) of a node i indicates that, starting from
the city i, to how many other cities the airline provides direct flight services. The
degree distribution PDD(k) is defined as the probability that a node chosen uniformly
at random has degree k, i.e.,

PDD(k) =
1
N

N

∑
i=1

si, si =
{

1, pD(i) = k
0, pD(i) ̸= k (2)

The degree distribution PDD(k) can be used to identify whether a given airline route
network is a point-to-point network or a hub-and-spoke network. One can reason-
ably expect that a hub city will have a largest node degree.

Shortest path in terms of flight distance and number of flight changes. Sup-
posing pSFD(i, j) is the shortest flight distance from city i to city j, then the average
shortest flight distance of the airline route network is

PASFD =
1

N(N −1) ∑
i, j∈[1,...,n],i̸= j

pSFD(i, j) (3)

A well designed airline route network should have a relatively small average shortest
path length in order to shorten flight times and therefore to cut operating costs.
As is well known, the cost and time for changing flights at airports are not cheap.
Therefore, if direct flight between two cities is out of the options, the least flight
changes should be the first choice to both airlines and passengers. Let pLFC(i, j)
denote the least flight changes required when travelling from city i to city j. Then
the average least flight changes is

PALFC =
1

N(N −1) ∑
i, j∈[1,...,n],i̸= j

pLFC(i, j) (4)
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Robustness. Robustness is used to measure the importance of each individual
city and route segment when the reliability/redundancy of a given airline route net-
work is concerned. The closure of airport(s) and/or route segment(s) usually has a
primary impact on the flight services which need to stop by the closed airport(s)
or to go through the closed route segment(s). Each airline company needs to assess
the robustness against closure of airport(s) and/or route segment(s) in its route net-
work. That is, when certain airport(s) or route segment(s) is (are) closed, how easily
can the affected flight service(s) be replaced by unaffected flight services provided
by the same airlines? In this paper, we define two kinds of probabilities to assess the
robustness of airline route networks, one in terms of nodes (airports), and the other
in terms of links (route segments). In the first definition, PNP(n,m) is the probability
that, after n random airports are closed, there exists a smallest sub-network which
contains m airports. In the second definition, PLP(n,m) is the probability that, af-
ter n random route segments are closed, there exists a smallest sub-network which
contains m airports. If, after a random closure of airports or route segments, the rest
of the network still remains one connected graph, we say the smallest sub-network
has 0 airports. Then PNP(n,0) and PLP(n,0) can be used to assess how robust are
the flight services provided by the airlines against a random closure of n airports or
route segments. In our study PNP(1,0) and PLP(1,0) are used to define node robust-
ness and link robustness in order to measure the contribution of each node and link
in the network reliability/redundancy. Suppose an original network exhibits network
robustness PNP(1,0) and PLP(1,0). If a node or a link i is removed and the resulting
new network has network robustness P̄NP,i(1,0) and P̄LP,i(1,0), then the robustness
of node i and the robustness of link i are

PNP(i) = PNP(1,0)− P̄NP,i(1,0), (5)

PLP(i) = PLP(1,0)− P̄LP,i(1,0), (6)

respectively. Then the average node robustness and average link robustness are

PANR =
1
N ∑PNP(i), PALR =

1
L ∑PLP(i). (7)

2.2 Optimization of Airline Route Networks

There are two scenarios in the optimization of airline route networks, which rep-
resent different resource requirements and different extents to which the original
airline route network will be modified. Consequently, we have two optimization
problems to define as following.

Free-optimization. In this scenario, it is assumed that, for a given set of cities (N
is therefore fixed), the airline company has enough resources, e.g., aircraft and staff,
to run any network whose L is subject to an upper bound LUB ≤ N × (N − 1)/2,
and it is willing to discard its old network completely and switch to a brand new
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one. LUB roughly defines the maximum resources the airline company can deploy.
Therefore, the objective of optimization is to find a route network which connects all
given cities at the lowest cost in terms of a specific objective function. In this paper,
the basic objective function is constructed as following based on average least flight
changes, shortest flight distance, node robustness, link robustness, and/or degree
distribution

J1 = α1PALFC +α2PASFD +α3PANR +α4PALR +α5EDD (8)

EDD =
N−1

∑
i=1

(max(τ(i), | PDD(i)−DDD(i) |)− τ(i))2 (9)

where αi, i = 1, . . . ,5, are weights which determine the contribution of each network
property to the objective function, DDD is a desirable curve of degree distribution,
and τ(i) defines a tolerable zone for the gap between PDD and DDD. If the deviation
of PDD from DDD at point i is beyond the tolerable zone, i.e., | PDD(i)−DDD(i) |>
τ(i), it will be penalized.

Basically, more links can reduce the absolute values of PALFC, PASFD, PANR, PALR
and EDD, but the operation costs may soar up sharply if too many direct flights
between medium and small airports are provided. Therefore, although the airline
company has enough resources to run a network with up to LUB links, it may prefer
an L as small as possible. Here we introduce a threshold value LS, and any L > LS
will be punished accordingly as following

J2 = J1 +βmax(0,L−LS) (10)

where β is a penalty weight. The free-optimization problem can then be formulated
mathematically as

minL,{l1,...,lL}J2, N −1 ≤ L ≤ LUB. (11)

Free-optimization is useful for newly established airline companies to organize
their networks and services.

Constrained-optimization. For existing airline companies, a radical change to
their route networks is rarely the case, but a gradual modification is more preferable.
In this scenario, most resources are occupied, and there is limited flexibility in re-
deploying them. Without losing the generality, suppose we can remove LR old links
from the original network, add in LN new links, and LR and LN must satisfy the
following constraints

LR ≤ LR ≤ LR, (12)

LN ≤ LN ≤ LN , (13)

where LR and LR are lower bound and upper bound for LR, and LN and LN for LN .
If LR = LN = 0, LR = LO (the number of links in the original network) and LN =
LUB, then the constrained optimization problem is relaxed into the free-optimization
problem as discussed before.
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Suppose the operation costs are not sensitive to an LN within the range [LN ,LN ].
Then we do not need to penalize L, which equals (LO + LN − LR) and J2 is not
necessary. Therefore, the constrained optimization problem can be formulated as

minLR,LN ,{lR,1,...,lR,LR},{lN,1,...,lN,LN }J1 (14)

subject to Constraints (12) and (13), where lR,i, i = 1, . . . ,LR are old links that need
to be removed, and lN,i, i = 1, . . . ,LN are new links that need to be added.

3 A GA for Airline Route Networks

Here we use the adjacency matrix to design our chromosomes. For an airline route
network with N nodes and L links, the associated adjacency matrix MA is an N ×
N 0-1-valued symmetric matrix, where the entry MA(i, j) = 1 means a link exists
between node i and node j. To make our GA more computer-memory-efficient, we
take advantage of the symmetry of MA, and construct our chromosome as a 0-1-
valued vector composing of N × (N −1)/2 elements, which we call genes. Gene 1
to gene (N−1) come from MA(1,2) to MA(1,N) in order, and gene ((N−1)+(N−
i + 1))× i/2 + 1 to gene ((N − 1)+ (N − i + 1))× i/2 +(N − i) from MA(i, i + 1)
to MA(i,N) for i = 1, . . . ,N −1. In this way, all connectivity information in a given
network is encoded in the associated chromosome, as illustrated in Fig. 1.

However, the above 0-1-valued basic chromosome structure is only suitable for
the free-optimization problem. In the constrained-optimization scenario, existing
links in the original network need to be distinguished from newly added links, and
the removal of existing links should also be separated from the removal of newly
added links, such that any modification to the original network can be traced and
Constraints (12) and (13) can be checked against. To this end, we allow the genes in
the basic chromosome structure to take values between 0 and 3. In the chromosome
related to the original network, which is called seed chromosome in this paper, only
0 and 3 are used to set up genes: gene with value of 3 is related to an existing
link, while 0 means no link. By randomly introducing changes to its genes, the seed
chromosome is used to set up the first generation of chromosomes. If a new link is
added, the associated gene changes from 0 to 1, while if an existing link is removed,
the associated gene changes from 3 to 2. After a random initialization based on the
seed chromosome, the resulting new chromosome may have all values from 0 to
3, as illustrated in Fig. 1(d). No matter what operation is carried out on a gene in
a new chromosome, its value only changes between 0 and 1, or between 2 and 3,
depending on its initialized value based on the seed chromosome.

A feasible solution in airline route networks should satisfy certain constraints
such as (12) and (13). Consequently, the associated feasible chromosome must sat-
isfy the following constraints on the genotypic level:

∑g(i) ≤ LUB (15)



A GA for the Management of Airline Route Networks 501

6

5

4

2

1
3

8

9

10

7

11

a An airline route network (N=11): b Associated adjacency matrix:

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0
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c Associated basic chromosome: 

0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1… … 0 0 1

A chromosome has N×(N-1) /2 genes in total.

Gene 1 to gene (N-1)
record the adjacency 
relationships of node 1. 

Gene ((N-1)+(N-i+1))×i/2+1 to gene 
((N-1)+(N-i+1))×i/2+(N-i) record the 
adjacency relationships between 
node i and node j for all i< j≤N.

Adjacency relationship 
between node (N-1) and 
node N.

d A chromosome for constrained optimization: 

0 0 0 3 2 0 0 1 0 0 3 0 3 3 0 2… … 1 0 3

A gene with value 3 means the associated link exists in the original airline route network; 
Value 2 means the associated original link is removed; Value 1 means the associated link is 
newly added into the original network; Value 0 means no link. 

Fig. 1 Chromosome structure

LN ≤ ∑(g(i) == 1) ≤ LN (16)

LR ≤ ∑(g(i) == 2) ≤ LR (17)

where “==” is a logical function returning 1 when two variables are equal; oth-
erwise, returns 0. Constraints (16) and (17) are for the constrained-optimization
problem, while Constraint (15) is for both optimization problems.

During the initialization of the first generation, in the free-optimization scenario,
we randomly distribute 1 into a 0-valued chromosome, subject to Constraint (15);
while in the constrained-optimization scenario, we reverse the values of some ran-
domly chosen genes in the seed chromosome, subject to Constraints (16) and (17).
The reverse operation can be described as

gN(i) =
{

1−gO(i), gO(i) < 2
5−gO(i), gO(i) ≥ 2

}
, i = 1, . . . ,N × (N −1)/2. (18)
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Fig. 2 Evolutionary operators

Mutation aims to increase the diversity of chromosomes, so that the GA can ex-
ploit the solution space as widely as possible in order to stand a better chance to hit
a global optimum. Basically, the mutation operator chooses randomly some genes
in a given chromosome at a certain probability, and reverses their values. To avoid
generating unfeasible chromosomes, in the free-optimization scenario, LUB must be
observed, i.e., Constraint (15) must be satisfied when a gene is reversed from 0 to
1; while in the constrained-optimization scenario, each reverse operation should be
subject to Constraints (16) and (17). Sometimes, a single reverse operation is unfea-
sible, for instance, when LR = LR. In this case, the reverse operation will be carried
out in pairs, i.e., by randomly choosing a gene, then randomly choosing another
gene with a reversed value, and reversing their values simultaneously. Figure 2(a)
gives an illustration of the above mutation operation.

Crossover is used to identify, inherit and protect common genes shared by fit
chromosomes, and at the same time, to re-combine non-common genes searching
for new solutions. Crossover is crucial for GAs to converge quickly to optimums
or sub-optima. In the airline route networks, common genes represent the com-
mon connection information (adjacent or not adjacent) shared by different network
topologies for the same set of cities. If some good networks include certain same
connection information, then it is reasonable to believe this connection informa-
tion is useful to construct the optimal network. Based on the chromosome structure
defined above, one point crossover and uniform crossover can both work well with
common genes, as illustrated in Fig. 2(b). In one point crossover, a split point is cho-
sen randomly, each of the two parents split at the chosen point into two pieces, and
piece 1 (or piece 2) from parent 1 is combined with piece 2 (or piece 1) from parent
2 to generate offspring. In uniform crossover, each gene in the offspring inherits the
same gene from either parent 1 or parent 2 at a half-to-half chance.

In this paper, we choose uniform crossover because (i) it is more powerful in
terms of exploiting all possibilities of re-combining non-common genes [13], and
(ii) the feasibility issue can easily be addressed. In uniform crossover chromosome
feasibility requires we operate on each gene rather than on gene sections/pieces.
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For one point crossover, a separate feasibility-checking process is required after
the crossover operation, while for uniform crossover, the feasibility issue can be
addressed within the operation itself as follows.

Step 1: Inherit common genes, i.e., for i = 1, . . . ,N × (N − 1)/2, g3(i) = g1(i) if
g2(i) = g1(i); otherwise g3(i) = −1.

Step 2: Re-combine non-common genes subject to Constraints (15) to (17), i.e.,
for i = 1, . . . ,N × (N − 1)/2, when g3 = −1, do random inheriting if this does
not violate any relevant constraint; otherwise, inherit the gene which satisfies all
relevant constraints.

4 Preliminary Experiments

In this section we only give the results of some preliminary experiments to demon-
strate the potential of the proposed model and the associated GA in the management
of airline route networks. Figure 3(a) gives an example of using a combination of
PALFC and PASFD as objective function to reorganize the airline route network,
while Fig. 3(b) uses a combination of PALR and PANR. In Fig. 3(a), the original air-
line route network has a PALFC = 3.68. After adding three extra flight routes, the
new airline route network has a PALFC of 2.38. At the same time, PASFD, is reduced
from the original 772.58km to 598.59km. Figure 3(a) illustrates that, by carefully
choosing where to add just a few new services, it is possible to significantly reduce
the operating costs of an airline company. The airline route network in Fig. 3(b) has
poor network robustness in terms of links, i.e., PALR = 0.4412. Therefore, we use
the proposed GA to re-organized the flight services: replace 10 old services with
the same number of new services. As a result, PALR has a 66.7% increase to 0.7353,

Fig. 3 Results of preliminary experiments
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while the network robustness in terms of nodes, PANR, remains no change, i.e., is
still 0.9643. This means the overall network robustness is significantly improved
without change the scale of network. However, more effort, improvements, statisti-
cal analyses and comparative studies are necessary in order to complete the picture
of the proposed modelling as well as the GA.

5 Conclusions

This paper attempts to develop an effective and efficient genetic algorithm for op-
timizing the topology of airline route networks in terms of cost-efficiency and re-
liability. To this end, complex network techniques are used to model airline route
networks and some key network properties are identified and analyzed. Based on
the complex network modelling, a novel GA is developed with emphasis on chro-
mosome structure, mutation, uniform crossover and heuristic rules. The results of
some preliminary experiments illustrate the potential of the reported GA for im-
proving the management of airline route networks. Further research is in progress
to complete the reported work.
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